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Metallic particle is the most harmful material in the perspective of Gas-Insulated Substation (GIS) reliability. It creates 
defects in GIS, especially in the weakest areas, i.e. the triple junction, by initializing partial discharges (PDs) which can lead 
to the failure of GIS. Therefore, the investigation of PD characteristics and particle size and position on the spacer surface 
are indispensable in the efforts of improving the reliability of GIS equipments. In this paper, learning vector quantization 
(LVQ) was employed to recognize various PD signal patterns provoked by different particle sizes and positions on the 
spacer surface and processed the PD patterns to estimate the particle size and position in simulated GIS arrangement. 
With its pattern recognition capability, the developed LVQ technique was able to perform such estimations with an accuracy 
of 76%. The proposed method is designated as a contribution towards reliability improvement of GIS systems. 
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1. Introduction 
 

 SF6 has received worldwide acceptance for use in 

various high-voltage tools because of its superior 

insulating properties, such as compactness, extraordinary 

dielectric strength, outstanding arc quenching properties, 

non-flammability, non-toxicity along with advanced heat 

transfer characteristics [1-3]. However, the reliability of 

GIS is subject to the deterioration caused by the existence 

of metal particles. Due to charging of the insulators, free 

metal particles can stick to spacer of the GIS creating 

serious defects. As a consequence of these defects, PDs 

can commence in SF6 [4-5]. Such PDs are very dangerous 

to the insulation integrity of the GIS. The severity and the 

PD pattern depend on the particle’s length and position on 

the spacer surface [6-8]. Hence, it is important to 

recognize the size and location of particle along the spacer 

[9]. A subsequent study by the authors with more advance 

algorithm, i.e. Artificial Neural Network (ANN), has also 

been conducted with better accuracy [10].  

In present study, Learning Vector Quantization (LVQ) 

algorithm is proposed for particle size and position 

estimation purpose. LVQ is supervised classification 

algorithm invented by T. Kohonen [11]. Until now, the 

application of LVQ is limited to general PD classification 

for recognizing various defects [12-13]. None of them 

focused on particle defect in GIS.  

The development of LVQ was preceded by PD 

quantities generated at several particle dimensions and 

locations. For PD shapes characterization, a number of 

statistical operators called “fingerprint” were established. 

LVQ was implemented by using built-in toolbox of 

MATLAB version R2010a. The results show that the best-

developed LVQ network in this study is capable of 

achieving 76% recognition accuracy.  

 

2. Experimental setup 
 

The system studied is a parallel-plane electrode 

surrounded in a chamber having SF6 gas. An experimental 

setup is shown in Figure 1. The particle size is represented 

as L whereas the particle location H is well-defined as the 

distance among the bottom tip of the particle and the lower 

(i.e. grounded) electrode. The experimental setup shown in 

Figure 2 and procedure is explained in detail in [9]. 

The PD detection device bandwidth was fixed from 

20 kHz to 300 kHz for PD measurements. After calibrating 

the system, it computes and shows the floor noise and 

permits the amplifier limits to be adjusted without 

disturbing the system calibration.  
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Fig. 1. The tested electrode-spacer system 

 

 There are 10 arrangements of the particle lengths (L) 

and positions (H) have been used in research. For ease of 

analysis, they are named as “Defect 1” to “Defect 10”, as 

shown in Figure 3. In order to include the effect of SF6 
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pressure, PD data was collected for each defect at SF6 

pressures of 1, 1.5, 2, 2.5, and 3 bars. For each of these 

cases, the measurement was carried out 4 times to provide 

enough data for training process of the developed BP-

ANN. Therefore, a total of 200 PD measurements were 

obtained.  Each PD pattern acquisition process in every 

measurement was set about 10 seconds. For comparison 

among PD patterns of different defects, PDs data 

collection were carried out by the constant voltage i.e. 35 

kVrms. 

 

 
 

Fig. 2. The schematic diagram of the experimental setup 

based on the IEC 60270 PD detection method. 
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Fig. 3. The various combinations of particle size and 

position that form the defects 1 to 10 

 

 

 

 

3. PD Signals Acquisition and Presentation 
 

A set of experimental data having the evidence of 

every PD pulse were processed using data-processing 

application developed with MATLAB software. The 

following PD distributions were calculated for every 

experimental result. 

(a) Maximum PD magnitude against phase angle 

(Hqmax()) 

(b) Average PD magnitude against phase angle (Hqn()) 

(c) PD counts against phase angle (Hn()) 

(d) PD counts against magnitude (H(q)) 

(e) PD counts against energy (H(p)) 

 A typical graphical representation of these PD 

distributions is shown in Fig. 4. Out of five PD 

distributions, the first three can be separated into two 

different distributions for negative and positive cycles of 

the applied alternating voltage. Hence, for positive cycle 

the obtained distributions become Hqmax
+
(), Hqn

+
(), and 

Hn
+
(), and for negative half-cycle the distributions 

become Hqmax
-
(), Hqn

-
(), and Hn

-
(). 

As indicated in section I, the PD signals are identified 

by their “fingerprints”, which are the groups of numerous 

statistical operators quantitatively describing the PD 

distributions presented in Figure 4. The statistical 

operators used in this work, contain “skewness”, ”kurtosis’, 

“peaks”, “asymmetry”, “cross correlation” and “phase 

factor” [10]. The results shown in Figure 4, the applicable 

operators are listed in Table 1. As shown in this table, 

there are 29 operators recorded from every PD signal. The 

typical values of these operators are shown in Fig. 5. The 

29 operators listed in Table 1 are called “Operator 1” to 

“Operator 29” in this study according to Figure 5, with 

“skewness” of Hqmax() and “kurtosis” of H(p) being 

“Operator 1” and “Operator 29”, respectively. Since the 

PD measurements for every defect has been performed 4 

times at 5 SF6 pressure values, each defect was represented 

by a fingerprint data matrix of 29 × 20 size. 

 

 

4. Applications of LVQ for particle size and  
  position estimation 
 

LVQ is one of the neural network algorithms which is 

capable of performing multiclass classification. It is 

basically similar to Self-Organizing Map, developed also 

by Kohonen, however the training process of competitive 

layers is done in a supervised manner, i.e. target outputs 

are defined [11]. Thus, during the learning process input 

pattern vectors are classified into target classes chosen by 

the user.  
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Fig. 4 PD Distributions of Defect 2 obtained from the first measurement at SF6 pressure of 3 bars 

 
Table 1. Applicable statistical operators for each PD distribution 

PD 

Distrib. 
Skewness Kurtosis Peaks Asymmetry 

Cross 

Cor. 

Phase 

Fact. 
# 

Hqmax() (+) & (-) (+) & (-) (+) & (-)   × 8 

Hqn() (+) & (-) (+) & (-) (+) & (-)    9 

Hn() (+) & (-) (+) & (-) (+) & (-)   × 8 

H(n)   × × × × 2 

H(p)   × × × × 2 

Total number of statistical operators 29 

Note:  denotes “Yes”, whereas × represents “No”. 

 

 
 

Fig. 5. The statistical operators making up the 

 PD fingerprints 

 

 

A LVQ network consists of two layers, namely 

competitive layer and linear layer, as shown by the 

structure in Fig. 6. During the training (learning), the 

network learns distribution and topology of the input 

vectors. The elements in the vector inputs are arranged 

according to the topology determined by the user, which 

can be random topology. The distances among elements 

are obtained with distance function. Link distance is the 

most common distance function usually used.  

LVQ identifies and declares the nearest neuron i* as a 

winner. However, during the training all neurons in 

neighby area Ni*(d) are updated using Kohonen rule, 

except the winning neuron. All these neurons i Ni*(d) are 

adjusted using the following procedures: 

 

))1}(1,1{)(()1}(1,1{)}(1,1{  qIWqpqIWqIW iii   

(1) 

Or  

 

)()1}(1,1{)1()}(1,1{ qpqIWqIW ii             (2) 

 

Thus, the Ni*(d) has the indices for all neurons which are 

located in a radius d of the winning neuron i*. 
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 Fig. 6 The LVQ network architecture 

 

Therefore, when vector p is presented, the weights of 

winning neuron and its neighbors move toward p. As a 

result, after certain number of iterations, neighboring 

neurons have vectors alike each other.  

In this study, the learning process described above, 

also called LVQ1 learning rule, is further improved by 

using LVQ2.1 learning rule. The built-in LVQ toolbox in 

MATLAB version R2010a was used to implement the 

described LVQ network. In developing the best network, 

the learning rate  and the number of neurons in 

competitive layers S
1
 are varied in the wide ranges. The 

value of  is varied between 0.0025 and 0.11 with a step 

of 0.0025 and the value of S
1
 is varied between 5 and 50. 

With such a “grid search” method, the chance to obtain the 

best LVQ network becomes higher.  

Since there are 10 defects to be recognized, the 

developed LVQ network output will consist of 10 classes. 

Out of 4 PD fingerprint dataset obtained from 4 

measurements for each defect, 3 of them are used for 

training (learning) and the remaining 1 is used for testing. 

Therefore, there are 50 recognitions performed by the 

developed LVQ network because there are 5 pressure 

values. If the network can recognize a certain testing data 

set same as it is trained for, then “succeed” is achieved. 

Otherwise, “fail” is obtained. The performance of the 

developed LVQ network is expressed in terms of accuracy, 

which is the number of “succeed” occurrences divided by 

50.  

Fig. 7 show the performance of the developed LVQ 

network using several values of  and S
1
. The highest 

accuracy achieved by the network is 76%. This accuracy 

could be achieved by using several values of learning rate 

, however with different number of competitive neurons. 

Therefore, the chosen network is the one which can 

achieve 76% accuracy with the lowest number of 

competitive neurons, i.e. the network whose performance 

is shown in Fig. 7. This is because lower number of 

competitive neurons can reduce the network complexity, 

which results in lower computation time. As indicated in 

Fig. 7, the network achieves 76% accuracy when it is built 

using a learning rate of 0.0275 and 33 competitive neurons. 

The detailed results of this network, which is the list of 

“succeed”/”fail” occurrences, is presented in Table 2. 

     


a = 0.0275                       (b)  = 0.035                           (c)  = 0.045                    

 

    
 

 (d)  = 0.055                   (e)  = 0.095 
 

Fig. 7 Accuracies achieved by the developed LVQ network with various learning rates  
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5. Conclusions 
 

The PD signals produced by particle of various sizes 

and changing its position to the spacer surface were 

attained by the Digital PD Detector. Utilizing the acquired 

PD pulses data, various PD distributions, including time-

resolved and phase-resolved PD distributions were 

calculated. The PD patterns were characterized by their 

fingerprint values, consisting of some statistical operators. 

The Learning Vector Quantization (LVQ) algorithm with 

LVQ2.1 learning rule was developed and implemented in 

MATLAB software for recognition of the obtained PD 

patterns. In order to obtain the most optimal BP-ANN, 

several parameters were varied, including the value of 

learning ratio and the density of neurons in competitive 

layer. The network with learning rate of 0.0275 was found 

to be the most optimal since it can achieve the highest 

accuracy, i.e. 76%, with the lowest number of competitive 

neurons. 

 
Table 2. The recognition result produced by the developed LVQ with a = 0.0275 and S1 = 33 

 

Tested defect The recognition results 

 1 bar 1.5 bars  2 bars 2.5 bars 3 bars 

Defect 1       ×       ×   × 

Defect 2   × ×  

Defect 3   ×   

Defect 4 × ×    

Defect 5      

Defect 6   ×   

Defect 7      

Defect 8 ×  ×   

Defect 9  ×    

Defect 10      

Note:  denotes “succeed”, whereas × represents “fail”. 
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